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ABSTRACT 

The energy consumed by heating, ventilating, and air conditioning (HVAC) 

systems has been increasing over the last decades. Thus, improving efficiency of HVAC 

systems has gained attention of industry and academia. This concern has posed 

challenges for modeling and optimizing HVAC systems. The traditional methods, such as 

analytical and statistical approaches, usually involve assumptions that may not hold in 

practice since HVAC systems are complex, nonlinear, and dynamic. 

Data-mining is a novel science aiming at extracting system characteristics, 

identifying models and recognizing patterns from large-size data sets. It has proved its 

power in modeling complex and nonlinear systems through various effective and 

successful applications in industrial, business, and medical areas. Applications of 

classical data-mining approaches, such as neural networks and boosting tree have been 

reported in the HVAC literature. Evolutionary computation, including swarm 

intelligence, have rapidly developed in the past decades and then applied to improving 

the performance of HVAC systems.  

This research focuses on modeling, optimizing, and controlling HVAC systems. 

Data-mining algorithms are utilized to extract predictive models from experimental data 

sets provided by the Energy Resource Station located in Ankeny, IA.  Evolutionary 

algorithms are employed to optimize models formulated based on the data-driven 

approach. In the optimization process, two set points of the HVAC system, supply air 

duct static pressure set point and supply air temperature set point, are controlled aiming at 

improving energy efficiency and maintaining thermal comfort.  

The methodology presented in this Thesis is applicable to various industrial 

processes other than HVAC systems.
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CHAPTER 1 

INTRODUCTION 

 

Heating Ventilating and Air Conditioning (HVAC) systems are designed to 

control the indoor environment including indoor air quality and thermal comfort for 

occupants. HVAC systems are used in residential and commercial buildings worldwide. 

Figures 1.1 -1.2 illustrate schematic diagrams of a typical air handling unit (AHU) system 

and a typical single-room variable-air-volume box. According to the literature [1, 2], 

HVAC systems account for over 60% of the energy consumed by buildings and this 

number is likely to grow in the future. From the efficiency perspective, it is crucial to 

maintain a healthy and a comfortable indoor environment for occupants since people 

spend large portion of their time in buildings. Therefore, balancing the energy efficiency 

and effectiveness of HVAC systems has drawn attentions of the research community.  

 
Figure 1.1 Schematic diagram of a typical air handling unit system 
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Figure 1.2 Schematic diagram of a typical single-room variable-air-volume box 

Previous research has introduced numerous simulation models for analysis of 

different operational scenarios of HVAC systems. A typical commercial HVAC system 

includes a large number (hundreds) of variables with static and dynamic characteristics 

most of which are neglected by simulation models. Therefore, simulation models cannot 

be used in practical to control the HVAC systems, especially when a rapid response 

needed.  

Analytical or mathematical models of HVAC systems have been extensively 

investigated in the literature. Although such models can accurately describe the physical 

properties of HVAC systems, they could be computationally expensive due to the 

complex, nonlinear, and dynamic characteristics of the system. Analytical models can 

only be reliable and practical when appropriate assumptions or simplifications are made.  
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 Data-driven models have gained attention in the recent years and applied to 

modeling HVAC systems.  The data-driven models are derived from empirical behavior 

and heuristic searching process [3]. They have proven to be powerful in capturing 

complex, noisy, and imprecise data collected from various nonlinear and large-scale 

systems.  

1.1 Review of Simulation Models of HVAC Systems 

The simulation models depend mostly on simulation software and a few are 

derived from physics-based equations.  

Winkelmann et al. [4] employed DOE-2 building energy analysis computer 

program to simulate hourly-varying interior illuminance, management of windows for 

sun and glare control, and the operation of electric lighting control systems. They 

presented sample DOE-2 day-lighting output reports and relevant results analysis in their 

research. Cui et al. [5] utilized HVACSIM+ environment to establish a simulation model 

for a hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) 

supply system. A case study showed that the HGCHP system can effectively alleviate the 

imbalanced loads of the ground heat exchanger and can offer almost 95% DHW demand. 

Aiming at evaluating the energy performance of the variable-refrigerant-volume air-

conditioning system, Zhou et al. [6] developed and validated a simulation module on the 

simulation program, EnergyPlus. McDowell et al. [7] integrated the CONTAM air flow 

modeling tool into the TRNSYS energy analysis program in order to address an issue that 

commonly used programs for estimating the energy use of buildings do not incorporate 

the inter-zonal airflow modeling techniques required to adequately account for the effect 

of these factors on energy usage. Sowell et al. [8] presented direct comparisons between 

the Simulation Problem Analysis and Research Kernel (SPARK) and the HVACSIM+ 

programs and an indirect comparison between SPARK and the IDA program. An 
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overview of twenty major building energy simulation programs was proposed by 

Crawley et al. [9].    

Yu et al. [10] developed a mathematical model for simulating an operating 

strategy of regulating the set point of condensing temperature based on the outdoor 

temperature as well as enhancing the efficiency of air-cooled chillers used in air-

conditioned buildings. Huang et al. [11] proposed a system level dynamic model as 

simulation platform that integrated five energy management control functions such as 

outside air economizer cycle, programmed start and stop lead time, load reset and 

occupied time adaptive control strategy.   

Although they are free of the spatial and temporal limit, simulation models have 

the following drawbacks [12]: 

 They require significant look-ahead time intervals. 

 They can only be involved in high-level supervisory control. 

 The building use varies or changes (e.g. large variations in occupancy or 

significant change in weather condition) which are not known in advance.  

1.2 Review of Analytical Models of HVAC Systems  

The analytical approaches are usually applied to model individual components or 

overall HVAC system.  

He et al. [13] presented a new lumped-parameter model for describing the 

dynamics of vapor compression cycles. Particularly the dynamics associated with the two 

heat exchangers, i.e., the evaporator and the condenser, are built based on a moving-

interface approach by which the position of the two-phase/single-phase interface inside 

the one-dimensional heat exchanger can be properly predicted. Wang et al. [14] 

developed a simple, yet accurate cooling coil unit engineering model that yielded better 

real time control and optimization of HVAC systems. They used a technique that is based 

on an energy balance and heat transfer principles to build the model. Jin et al. [15] 
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proposed a new, simple, yet accurate mechanical cooling tower model for the purpose of 

energy conservation and management that is on the basis of Merkel’s theory and 

effectiveness-NTU method. Yu et al. [16] applied mathematical modeling with two 

different approaches, block-wise Simulink and bond graph. Results from their research 

indicated that combination with two approaches to realize complicated models of 

building HVAC system for the application of model-based fault detection and diagnosis 

is a realistic solution.  Sen et al. [17] developed a comprehensive numerical study of the 

performance of a capacitive humidity sensor for HVAC applications. 

Liu et al. [18] employed a calibrated simplified engineering modeling method to 

optimize HVAC system operation. The method can be utilized to optimize operating 

strategies and control schedules. Zheng [19] presented a comprehensive modeling and 

optimization methodology for global multiple-stage optimal operation of HVAC and 

building systems. Two different dynamic models of a multi-zone variable air volume 

system had been developed using two approaches respectively: bottom-up and top-down 

approaches. Kulkarni et al. [20] proposed a proportional control system for the residential 

building by setting up the dynamic simulation for the building and the control system. 

They used state-space method to model the building system and the corresponding code 

was implemented on MATLABTM. Platt et al. [21] focused on real-time HVAC zone 

model fitting and prediction techniques based on physical principles. Their proposed 

approach was validated by comparing real-time HVAC zone model fitting and prediction 

against the corresponding experimental measurements. Tashtoush et al. [22] designed a 

procedure for deriving a dynamic model of HVAC system that consists of a zone, heating 

coil, cooling and dehumidifying coil, humidifier, ductwork, fan, and mixing box. Their 

focus was centered on control strategies to reduce energy consumption and improvement 

of the quality of indoor environment.  

Although the analytical approaches can offer benefits, such as the ability to 

address cause and effect scenarios, they have the following disadvantages: 
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 They can be computationally expensive, especially for solving complex 

systems. 

 Some analytical approaches can only be suitable for component level. It is 

inapplicable to apply them into system-level.  

 Many approaches can be employed to system level application only when 

assumptions and simplifications are made. 

1.3 Review of Data-driven Models of HVAC Systems  

In the past decade, data-driven approaches have been extensively applied to 

model HVAC systems along with the development of novel data-mining algorithms [23, 

24]. 

Katipamula et al. [25] developed multiple linear regression (MLR) models that 

were applied to derive baseline models and detect deviations in energy consumption 

resulting from major operational changes. Compared to single-variable model, MLR 

models showed a decrease in coefficient of variation which is between 10 percentage to 

60 percentage and with an average decrease of about 33%. Abbassi et al. [26] utilized 

artificial neural network to construct thermodynamic modeling of an evaporative 

condenser under steady state and transient state conditions for establishing control of 

thermal capacity. Teeter et al. [27] applied a functional link neural network approach to 

performing the HVAC thermal dynamic system identification. In their research, they 

presented methodologies to reduce inputs of the functional link network, to degrade the 

complexity, and to speed up the training speed. Soyguder et al. [28] utilized artificial 

neural fuzzy interface system method to predict the damper gap rates of a HVAC system 

with only one zone. Xi et al. [29] employed support vector regression (SVR) to build the 

2-by-2 nonlinear dynamic model of a HVAC system. Based on the model, a nonlinear 

model predictive controller was then designed. Kumar et al. [30] demonstrated 

application of least square support vector machines (LS-SVM) to estimate the predicted 
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mean vote for thermal comfort and the generation of psychometric chart. Kusiak et al. 

[31] proposed a data-driven approach for the development of a daily steam load model 

that is realized by a neural network ensemble with five multi-layer perceptron (MLPs). 

Kusiak et al. [32-35] applied neural network to model the air handling unit, variable-air-

box, and overall HVAC system and to develop virtual models of indoor air quality 

sensors.  

1.4 Computational Intelligence and Optimization  

New theories and techniques in computational intelligence [36-38] offer 

alternatives to solve problems in HVAC systems.  

Wright et al. [39] designed a multi-objective genetic algorithm search method in 

the identification of the optimum pay-off characteristic between the energy cost of a 

building and the occupant thermal discomfort. Lu et al. [40] first formulated a mix-

integer nonlinear constraint optimization of system energy and then employed a modified 

genetic algorithm to solve the optimization problem. Fong et al. [41] proposed a meta-

heuristic simulation – evolutionary programming coupling approach developed by 

evolutionary programming to effectively handle the discrete, nonlinear and highly 

constrained optimization problem for HVAC systems. Hadjiski et al. [42] presented a 

new hybrid intelligent system for HVAC system control by integration of multi-agent 

system, dynamic ontology, and colony optimization. Fong et al. [43] designed a robust 

evolutionary algorithm to efficiently solve the simulation model of a HVAC system that 

is a time consuming problem. Ardakani et al. [44] employed continuous genetic 

algorithm and particle swarm optimization to solve an optimal chiller loading problem.   

The goal of this thesis is to analyze an HVAC system and develop nonlinear, 

nonparametric, and dynamic models to optimize the system performance in two 

objectives, minimizing the energy consumed by components, and maintaining the thermal 
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comfort of the inside environment. Intelligent optimization algorithms are applied to 

solve the models derived by data-driven approaches.  

1.5 Thesis Structure 

The structure of the Thesis is organized as follows. Chapter 1 reviews the research 

of HVAC systems. In chapter 2, a predictive model and simulation model are built based 

on data mining approach and then an interior-point method is applied to solve the data-

driven model. In chapter 3, a dynamic neural network is proposed to build a dynamic 

HVAC model and then a multi-objective particle swarm optimization algorithm is 

applied to solve the model. In chapter 4, a data-driven approach is adopted to build an 

HVAC model and fuzzy logic and multi-objective particle swarm optimization are 

employed to solve the model.  
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CHAPTER 2 

OPTIMIZATION OF HVAC SYSTEMS WITH AN INTERIOR- 

POINT METHOD 

2.1 Introduction 

In this chapter, a time-series-based model is extracted by a data-driven approach 

to predict energy consumption and indoor temperature of an HVAC system. A simulation 

model is also built based on the same data-driven approach to simulate energy 

consumption and indoor temperature of the HVAC system. The effectiveness of the data-

driven approach has been demonstrated in the literature [32-33]. Poisson and uniform 

distributions are applied to simulate the behavior of the occupants impacting the internal 

heat balance. An optimization model is developed from the predictive model to minimize 

energy consumption while maintaining the indoor air temperature within a desirable 

range. The supply air static pressure and the supply air temperature set points are 

generated by this optimization model by applying a nonlinear interior-point algorithm to 

solve it. The interior-point method was originally developed for linear programming 

optimization and then extended to non-convex nonlinear programming [45-47]. A case 

study is presented to validate the effectiveness of the proposed approach.   

2.2. Problem Description 

A typical variable air volume (VAV) heating, ventilating, and air conditioning 

(HVAC) system includes a chiller, pumps, a supply fan, a return fan, and VAV boxes. A 

schematic diagram of such a system is shown in Figure 2.1. The chiller, pumps, supply 

fan, return fan, and VAV reheating coils are the main consumers of the energy. In the 

HVAC system considered in this chapter, the chillers, pumps, supply fan, and return fan 

consume electricity, while the VAV reheating coils consume natural gas. In total, the 

energy consumed by the HVAC system can be expressed by Equation (2.1): 
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                                                                                                       (2.1) 
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V-4

Damper

Damper
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Exhaust grille

Mixed air

 
Figure 2.1 Schematic diagram of a typical HVAC system 

The goal of the research reported in this Chapter is to minimize the total energy 

consumption, while maintaining the indoor temperature (thermal comfort) at a desirable 

level by adjusting two controlling set points: the supply air static pressure and the supply 

air temperature set point. In this research, the indoor humidity is not considered since the 

relevant data in the experimental building cannot be obtained. Another reason is due to 

the average humidity in our experimental location that falls in the desirable range most of 

the time. Therefore, humidity is not necessary to be considered in the model proposed in 

this research. Thus, in constructing the energy consumption predictive model and the 

indoor temperature predictive model, it is necessary to include the two set points as 

parameters (see Equations (2.2) – (2.3)). 

  (   )    ( )                                                                                               (2.2) 

  (   )    ( )                                                                                               (2.3) 
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where    (   ) and     (   ) represent the energy consumption and indoor 

temperature at time t+d, t current time, d time increment.  

A nonlinear autoregressive time-series model with external input (NARX) is used 

to capture the dynamic behavior of the system as shown in Equations (2.4) – (2.5): 

  (   )    (  ( )   (   )     (      )   ( )   (   )     (      ))          (2.4) 

  (   )    (  ( )   (   )     (      )   ( )   (   )     (      ))         (2.5) 

Two models for simulating energy consumption and indoor temperature at time t 

are also considered and expressed in Equations (2.6) - (2.7): 

  ( )    (  (   )     (      )   ( )   (   )     (      ))  (2.6) 

  ( )    (  (   )     (      )   ( )   (   )     (      ))   (2.7) 

where    is the time increment for each input in the time series model. The 

internal heat gain has a significant impact on the HVAC energy consumption. In 

commercial buildings, the number of occupants is a random variable. Thus, it is 

necessary to model activities of the occupants. In this research, considering its successful 

application in simulating discrete occurrences, a Poisson process is applied to model 

arrival of the occupants, and a uniform distribution is used to model their departure. 

Assume the occupants arrive at the conditioned zone in accordance with a Poisson 

distribution with rate  . Each occupant’s departure time is assumed to be independent and 

modeled with a uniform distribution  (   ). Based on these assumptions, the number of 

occupants remaining in the conditioned zone at time t is expressed in Equation (2.8): 

 [ ( )]   ∫ (        )  
 

 
                                                                    (2.8) 

where N(t) is the number of occupants staying in the conditioned zone at time t. 

2.3 Data Description 

The HVAC system discussed in this Chapter is operated by the Energy Resource 

Station in Ankeny, Iowa, which is an energy laboratory for testing and demonstrating 

commercial HVAC systems. The system includes two independent identical air handling 
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units (AHUs) and thermal zones. The data set in this research was obtained from an 

experiment designed to investigate the impacts of two AHU set points, the supply air 

static pressure (SA-SPSPT) and the supply air temperature set point (SAT-SPT) on the 

total energy consumption and the indoor temperature. The set points of both air handling 

units were adjusted during the experiment. In particular, the SA-SPSPT varied from 0.4 

in. WG (0.1 kPa) to 1.8 in. WG (0.45 kPa) with 0.2 in. WG (0.05 kPa) increments; 

whereas the SAT-SPT varied from 50 °F (10 °C) to 65 °F (18.33 °C) at 1 °F (0.556 °C) 

increments. To simulate the internal heating load of occupants, electric energy was used.  

In total, more than 300 parameters, including weather conditions, energy consumption, 

and indoor temperature, was recorded at 1-minute intervals by the sensors. The data was 

collected from June 22 to July 16, 2011. The original data set at 1-min frequency has 

been transformed into to 1-h data by averaging the 1-min data. In total, 789 data instances 

(from June 22 to July 14, 2011) were used for training and testing, while 96 data 

instances (from July 15 to July 16, 2011) were used as a validation set. Table 2.1 presents 

details of the data. 

 Table 2.1 Description of data sets 

No. Data Set Type Time Period 
Number of 

Instances 

1 Entire data set 06/22 – 07/16/2011 885 

2 Training data set Randomly selected from 06/22 to 07/14/2011 670 

3 Test data set Randomly selected from 06/22 to 07/14/2011 119 

4 Validation data set 07/15 – 07/16/2011 48 

2.4 Parameter Selection 

The original data set includes almost 400 data points (parameters), most of which 

are irrelevant to the modeled phenomena. The presence of unimportant parameters may 

negatively impact the accuracy of the models derived from the data. Therefore, it is 
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essential to select the parameters used to develop accurate, scalable, and comprehensive 

models [48]. A boosting tree is a learning algorithm for ranking the importance of 

parameters for prediction. According to [49, 50], the boosting tree algorithm has 

demonstrated good performance in parameter selection, and therefore it is used in this 

chapter for selecting parameters. Tables 2.2 - 2.3 list all the final inputs for building 

predictive models of energy consumption and indoor temperature.  Based on the 

parameter selection for building predictive models, Tables 2.4-2.5 list the inputs for 

building identification models that are used to simulate energy consumption and indoor 

temperature at time stamp t. 

Table 2.2 Parameters selected for building HVAC system energy consumption model 

Input Description Remark 

    Supply air duct static pressure set point at time t + d Controlled input 

    
AHU supply air temperature set point at time t + d Controlled input 

    
Internal heating load at time t + d Predicted input 

    
Chilled water coil mixed water temperature at time t Observed input 

    
Chilled water coil valve position at time  t Observed input 

    Mixed air temperature  at time t Observed input 

    Outside air flow rate at time t Observed input 

    
Outside air inlet temperature at time t Observed input 

    
Outside air inlet temperature at time t - d Observed input 

    Return air temperature at time t Observed input 

    
Return fan VFD speed at time t Observed input 

    
Supply air flow rate at time t Observed input 

    
Supply fan pressure differential at time t Observed input 

    Infrared radiation at time t Observed input 

    Infrared radiation at time t - d Observed input 

    Outside air temperature at time t Observed input 

    Solar normal flux at time t Observed input 

    Solar normal flux at time t - d Observed input 

    Variable air volume box damper position at time t Observed input 

    Variable air volume box velocity pressure differential at time t Observed input 

    Indoor temperature at time t Observed input 

    HVAC system energy consumption at time t Observed input 
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Table 2.3 Parameters selected for building HVAC system indoor temperature model  

Input Description Remark 

    Supply air duct static pressure set point at time t + d Controlled input 

    
AHU supply air temperature set point at time t + d Controlled input 

    
Internal heating load at time t + d Predicted input 

    
Mixed air temperature at time t Observed input 

    
Outside air inlet temperature at time t Observed input 

    Return air flow rate at time t Observed input 

    Return air temperature at time t Observed input 

    
Supply fan air flow rate at time  t Observed input 

    
Infrared radiation at time t Observed input 

    Outside air temperature at time t Observed input 

    
Solar normal flux at time t Observed input 

    
Solar normal flux at time t - d Observed input 

    
Variable air volume box damper position at time t Observed input 

    Variable air volume box velocity pressure differential at time t Observed input 

    HVAC system energy consumption at time t Observed input 

    HVAC system indoor temperature at time t Observed input 

    HVAC system indoor temperature at time t - d Observed input 

2.5 HVAC System Modeling 

2.5.1 Model formulation 

Multilayer perceptron (MLP) [51] is a feed-forward neural network model that 

maps input data onto an output. An MLP consists of multiple layers of nodes in a directed 

graph, with each layer fully connected to the next. With the exception of the input layer, 

each node is a neuron with a nonlinear activation function. Note that all nodes in one 

layer use the same activation function. Normally, the activation functions used in MLP 

include hyperbolic tangent function, logistic function, exponential function, and 

identification function, as shown in Equations (2.9) – (2.12): 

  ( )      ( )  
      

                                                                                                (2.9) 

 ( )  
 

                                                                                                                  (2.10) 

 ( )                                                                                                                      (2.11) 

 ( )                                                                                                                        (2.12) 
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Table 2.4 Parameters selected for modeling energy consumption at time stamp t  

Input Remark 

Supply air duct static pressure set point at time t Observed input 

AHU supply air temperature set point at time t Observed input 

Internal heating load at time t Observed input 

Chilled water coil mixed water temperature at time t Observed input 

Chilled water coil valve position at time  t Observed input 

Mixed air temperature  at time t Observed input 

Outside air flow rate at time t Observed input 

Outside air inlet temperature at time t Observed input 

Outside air inlet temperature at time t - d Observed input 

Return air temperature at time t Observed input 

Return fan VFD speed at time t Observed input 

Supply air flow rate at time t Observed input 

Supply fan pressure differential at time t Observed input 

Infrared radiation at time t Observed input 

Infrared radiation at time t - d Observed input 

Outside air temperature at time t Observed input 

Solar normal flux at time t Observed input 

Solar normal flux at time t - d Observed input 

Variable air volume box damper position at time t Observed input 

Variable air volume box velocity pressure differential at time t Observed input 

Indoor temperature at time t Observed input 

HVAC system energy consumption at time t - d Observed input 

In this chapter, a three-layer MLP with one output unit is utilized to describe the 

HVAC systems. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is used to 

train the network. Thus, an explicit expression for the energy consumption and the indoor 

temperature predictive models is represented in Equations (2.13) – (2.14): 

  (   )   ̃ (∑   
( )  (∑    

( )   
 
       

( )
)

  
   )                                     (2.13) 

  (   )   ̃ (∑   
( )  (∑    

( )   
 
       

( )
)

  
   )                                    (2.14) 

       where    
( )

and    
( ) are the elements of input-hidden weight matrices for    and    

respectively,    
( )

 and    
( )

are the hidden bias for    and    respectively,   
( )

and   
( )

   

are the elements of hidden-output weight matrices for    and    respectively. In order to 

obtain the functions   (   )in Equation (2.15) and    (   ) in Equation (2.16), data 
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set 2 (670 instances) and data set 3 (119 instances) of Table 1 are used as a training set 

and a testing set, respectively.   

Table 2.5 Parameters selected for modeling indoor temperature at time stamp t  

Input Remark 

Supply air duct static pressure set point at time t Observed input 

AHU supply air temperature set point at time t Observed input 

Internal heating load at time t Observed input 

Mixed air temperature at time t Observed input 

Outside air inlet temperature at time t Observed input 

Return air flow rate at time t Observed input 

Return air temperature at time t Observed input 

Supply fan air flow rate at time  t Observed input 

Infrared radiation at time t Observed input 

Outside air temperature at time t Observed input 

Solar normal flux at time t Observed input 

Solar normal flux at time t - d Observed input 

Variable air volume box damper position at time t Observed input 

Variable air volume box velocity pressure differential at time t Observed input 

HVAC system energy consumption at time t Observed input 

HVAC system indoor temperature at time t - d Observed input 

HVAC system indoor temperature at time t - 2d Observed input 

  (   )  ∑   
( )  

   
 (∑  

  
( )

   
 
     

  
( )

)

 
                                                       (2.15) 

  (   )  ∑   
( ) 

(∑    
( )

   
 
       

( )
)  

                                                          (2.16) 

In this research, the three-layer MLP is also applied to extract the concrete 

expression for the two identification models for simulating energy consumption and 

indoor temperature in Equations (2.6) – (2.7). 

2.5.2 Model validation 

To evaluate performance of the predictive models built by the MLP ensemble 

algorithm, four metrics are used: the mean absolute error (MAE) (Equation (2.18)), the 

standard deviation of absolute error (Std_AE) (Equation (2.21)), the mean absolute 
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percentage error (MAPE) (Equation (2.20)), and the standard deviation of absolute 

percentage error (Std_APE) (Equation (2.22)) [52]. In Equation (2.17), AE represents the 

absolute error, while in Equation (2.19) represents the absolute percentage error. 

      ̃                                               (2.17) 

     
∑    

 
   

 
                           (2.18) 

       
 ̃  

 
                                                  (2.19) 

      
∑     

 
   

 
                                (2.20) 

         √∑ (       )  
   

   
                               (2.21) 

          √∑ (         )  
   

   
                             (2.22) 

 here  y   is the predicted value  y is the actual observed value  and n is the 

number of data instances used for training and testing. The data in Table 2.6 shows the 

performance of the MLP-developed predictive models. Figures 2.2-2.3 present the 

correlation coefficient between the observed and the predicted values. Figures 2.4-2.5 

compare the predicted and observed values of the energy consumption and indoor 

temperature on 119 1-h data instances drawn from data set 3. As shown in Figures 2.4-

2.5, the predicted values of the energy consumption and the indoor temperature closely 

follow the observed values. Performance of the two predictive models is summarized in 

Table 2.6 showing the accuracy of the model predicting energy consumption on the test 

data set as 90%, while the accuracy for the indoor temperature is 99.7%. Table 2.7 lists 

the performance for the two identification models for simulating energy consumption and 

indoor temperature.   
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Table 2.6 Performance of the models predicting HVAC system energy 

consumption and indoor temperature 

Objective Data Set MAE MAPE Std_AE Std_MAPE 

Energy consumption 
Training 0.362 6.6% 0.353 5.5% 

Testing 0.454 10.0% 0.452 19.4% 

Indoor temperature 
Training 0.157 0.2% 0.159 0.2% 

Testing 0.210 0.3% 0.218 0.3% 

Table 2.7 Performance of the simulation models of energy consumption 

and indoor temperature 

Objective Data Set MAE MAPE Std_AE Std_MAPE 

Energy consumption 
Training 0.214 4.3% 0.176 4.1% 

Testing 0.247 5.4% 0.205 5.2% 

Indoor temperature 
Training 0.091 0.13% 0.085 0.12% 

Testing 0.114 0.16% 0.11 0.16% 

 
Figure 2.2 The correlation coefficient of the observed and predicted values of HVAC 

system energy consumption 
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Figure 2.3 The correlation coefficient of the observed and predicted values of indoor 

temperature 

 
Figure 2.4 Observed and predicted values of HVAC system energy consumption 
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Figure 2.5 Observed and predicted values of HVAC system indoor temperature 

2.6 Model Optimization 

2.6.1 Optimization model formulation 

To optimize the energy consumption of the HVAC system, the objective function 

  (   ) in Equation (2.15) is minimized while maintaining the value of   (   ) in 

Equation (2.16) within an acceptable range. Optimal values of the supply air temperature 

and the supply air duct static pressure set points at time t + d are computed. The observed 

indoor temperature is measured by the sensors while the observed energy consumption is 

computed from Equation (2.1). The constraints in the model are established by setting 

lower and upper bounds of the control parameters and assigning an acceptable range for 

indoor temperature as follows:  

 The supply air temperature set point varies from 50°F (10°C) to 64°F 

(17.7 °C).  

 The supply air duct static pressure set point varies between 0.4 in. WG 

(0.1 kPa) to 1.8 in. WG (0.45 kPa). 
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 The indoor temperature is maintained between 68°F (20.0°C) and 73°F 

(22.8°C).  

These three limits are determined by the design of the HVAC system and 

preferences of the occupants. The optimization model is formulated in Equation (2.23): 

                                                          

 

 

 

                        (2.23) 

 

 

 

 

Where   (   ) is the value of indoor temperature predicted by applying the 

original supply air duct static pressure set point     (   ) and    (   )  and the 

supply temperature set point     (   ) and    (   ). In minimizing the energy 

consumption at time stamp t + d, the room temperature is maintained within a 

predetermined range.  

2.6.2 Nonlinear interior-point algorithm 

The interior-point method was initially proposed by John von Neumann for linear 

programming optimization and was then extended to nonlinear programming.  Consider 

the general nonlinear programming model [53]: 
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where   ( ) is an equality constraint, while   ( ) is an inequality constraint. The 

Karush–Kuhn–Tucker (KKT) conditions for the model in (2.24) are formulated in (2.25) 

– (2.28): 

  ( )    
 ( )    

 ( )                                                              (2.25) 

                                                                                 (2.26) 

  ( )                                                                              (2.27) 

  ( )                                                                             (2.28) 

Applying Ne ton’s method [53] to the nonlinear system in the variables x, s, y 

and z, the Equation in (2.29) is obtained: 

 

 

             (2.29) 

Where L is the Lagrangian of model (2.24),  

 (       )   ( )      ( )    (  ( )   )                                               (2.30) 

After the values (           ) have been determined, new values of 

(           ) in (2.31) are computed: 

        
       

      
      , and 

        
       

      
                                                                 (2.31) 
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          (   ]       (   )  , and  
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In the algorithm, the following function based on the perturbed KKT system in 

Equations (2.25) - (2.28) is used: 

 (         )      ‖  ( )    
 ( )    

 ( ) ‖ ‖     ‖ ‖  ( )‖ ‖  ( )   ‖  

Where ‖∙‖ is the vector norm. 

Algorithm 1, borrowed from [53], shows the basic interior-point algorithm for 

nonlinear programming: 

Algorithm 1 

 Choose    and     , and compute initial values for the multipliers  

               and     . Select an initial barrier parameter      and  

             parameters     (   ). Set    . 

 while a stopping criterion for the nonlinear problem in Eq. (2.24) is not  

            satisfied, 

  while  (              )     

   Solve (2.26) to obtain the search direction (           ); 

   Compute   
      

    using (2.29); 

    Compute (                   ) using (2.32); 

   Set                  

  endwhile 

  Choose    (     ); 

 endwhile 

2.6.3 Case study 

In the case study presented in this section, the data set 4 (from 07/15/2011 – 

07/16/2011) of Table 2.1 is used. The following assumptions are made: 

 The occupied schedule is from 8:00 am to 12:00 am; 
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 The mean inter-arrival time of the occupants is  15 per hour; 

 Occupants’ stay in the conditioned space follo s uniform distribution  

 (     ); 

 The  arrival and leaving processes are independent; 

 Each occupant produces 400 BTU (421,740 Joules) heating load per hour, 

including sensible and latent heating load. 

The occupants’ arrival and staying is simulated by using MATLAB  and the 

internal heating load results for 07/15/2011 – 07/16/2011 are shown in Table 2.8: 

Using the simulated internal heating load together with the observed supply air 

duct static pressure set point and supply air temperature set point as inputs for simulation 

models, the energy consumption and indoor temperature from 07/15/2011 – 07/16/2011 

can be simulated in Figures 2.6-2.7. 

 
Figure 2.6 Simulated value of energy consumption in the period 07/15/2011 – 07/16/2011 

0

2

4

6

8

10

12

14

16

18

20

1 11 21 31 41

En
er

gy
 (

K
w

h
) 

Simulated value



www.manaraa.com

25 

 

 
 

 
Figure 2.7 Simulated value of indoor temperature in the period 07/15/2011 – 07/16/2011 

Using Equation (2.8), the average number of occupants at any time period is 

computed as: 

for         [ ( )]   ∫ (        )  
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   )   = 5, while the expected number of occupants in [9:00am, 10:00am], …  

[11:00pm, 12:00am] is 7.5. 

Using the above expected values as internal heating load, the optimization model 

(2.21) is solved. The energy consumption before and after optimization for 48 data points 

is shown in Figure 8, while the indoor temperature is illustrated in Figure2. 9. Figures 

2.10-2.11 compare the observed and optimized set points for supply air duct static 

pressure set point and supply air temperature set point based on the same 48 data points.  
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Table 2.8 The simulated internal heating load of the HVAC system 

Time 
Avg. No. of 

Occupants 

Occupants’ 

Heating (Wh) 
Lighting (Wh) 

Total Internal 

Heating Load 

(Wh) 

0:00--8:00 7/15/2011 0 0 0 0 

8:00--9:00 7/15/2011 4.68 524.55 1000 1524.55 

9:00--10:00 7/15/2011 8.97 1004.25 1000 2004.25 

10:00--11:00 7/15/2011 5.95 666.9 1000 1666.9 

11:00--12:00 7/15/2011 9.35 1047.15 1000 2047.15 

12:00--13:00 7/15/2011 9.09 1017.9 1000 2017.9 

13:00--14:00 7/15/2011 7.47 836.55 1000 1836.55 

14:00--15:00 7/15/2011 10.79 1209 1000 2209 

15:00--16:00 7/15/2011 6.27 702 1000 1702 

16:00--17:00 7/15/2011 10.36 1160.25 1000 2160.25 

17:00--18:00 7/15/2011 10.01 1121.25 1000 2121.25 

18:00--19:00 7/15/2011 9.21 1031.55 1000 2031.55 

19:00--20:00 7/15/2011 6.42 719.55 1000 1719.55 

20:00--21:00 7/15/2011 5.75 643.5 1000 1643.5 

21:00--22:00 7/15/2011 10.38 1162.2 1000 2162.2 

22:00--23:00 7/15/2011 9.47 1060.8 1000 2060.8 

23:00--0:00 7/15/2011 6.86 768.3 1000 1768.3 

0:00--8:00 7/16/2011 0.00 0 0 0 

8:00--9:00 7/16/2011 3.05 341.25 1000 1341.25 

9:00--10:00 7/16/2011 7.61 852.15 1000 1852.15 

10:00--11:00 7/16/2011 14.56 1630.2 1000 2630.2 

11:00--12:00 7/16/2011 11.40 1277.25 1000 2277.25 

12:00--13:00 7/16/2011 6.06 678.6 1000 1678.6 

13:00--14:00 7/16/2011 7.23 809.25 1000 1809.25 

14:00--15:00 7/16/2011 6.51 729.3 1000 1729.3 

15:00--16:00 7/16/2011 8.67 971.1 1000 1971.1 

16:00--17:00 7/16/2011 11.93 1335.75 1000 2335.75 

17:00--18:00 7/16/2011 7.56 846.3 1000 1846.3 

18:00--19:00 7/16/2011 7.82 875.55 1000 1875.55 

19:00--20:00 7/16/2011 10.06 1127.1 1000 2127.1 

20:00--21:00 7/16/2011 7.70 861.9 1000 1861.9 

21:00--22:00 7/16/2011 7.66 858 1000 1858 

22:00--23:00 7/16/2011 8.62 965.25 1000 1965.25 

23:00--0:00 7/16/2011 9.96 1115.4 1000 2115.4 
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Figure 2.6 shows that the optimized energy consumption is reduced over the 

simulated energy. Figure 2.9 illustrates that the optimized indoor temperature is 

constrained in the range between 68 F and 73 F in most cases. Figure 2.12 indicates that 

the optimized model provides 20% energy savings based on the 48 validation data points 

of Table 2.1. 

 
Figure 2.8 Comparison between the optimized and simulated HVAC system energy 

consumption 

 
Figure 2.9 Comparison between the optimized and simulated HVAC system indoor 

temperature 
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Figure 2.10 Comparison between optimized and observed values for supply air duct static 

pressure set point 

 
Figure 2.11 Comparison between optimized and observed values for supply air 

temperature set point  
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Figure 2.12 Comparison between the optimized and simulated total energy consumption 

based on the 48 data points 

2.7 Summary 

In this chapter, a data-driven model was built using a time-series approach, and 

then it was validated with a historical data set. The stochastic arrival of the occupants was 

considered in order to simulate the internal heating load. The data-driven model was 

solved by an interior-point method. A case study illustrating the model and the algorithm 

was presented. Numerical results indicated that the proposed approach is effective in 

optimization of the HVAC system energy consumption.  Energy savings of 20% were 

accomplished based on a validation data set.  Future research will focus on improving the 

model accuracy and better handling of user preferences.  
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CHAPTER 3 

MOELDING AND OPTIMIZATION OF AN HVAC SYSTEM USING A  

DYNAMIC NEURAL NETWORK 

3.1 Introduction 

As HVAC systems exhibit dynamic and nonlinear characteristics, a nonlinear 

autoregressive with external inputs (NARX) model can capture its properties and states. 

Many studies have focused on applying neural networks to identify and control dynamic 

systems based on NARX [54-57].  

This Chapter proposes an optimization model derived by a dynamic neural 

network based on the concept of a nonlinear autoregressive with external input (NARX). 

This model is then optimized by three variants of the multi-objective particle swarm 

optimization (MOPSO) algorithm. The optimization model and the MOPSO algorithm 

have been implemented at an industrial test laboratory setting. The results from the 

comparative experiment are reported.   

3.2 Solution Methodology 

3.2.1 Nonlinear autoregressive with external inputs 

The approach known as the nonlinear autoregressive with external input (NARX) 

is an important modeling of discrete non-linear systems. The NARX model is expressed 

in Equations (3.1) - (3.2).  

 ̂(   )    ( ( )  (   )    (     )   ( )   (   )     (     ))  (3.1) 

 ̂(   )    ( ( )  (   )    (     )   ( )   (   )     (     )) (3.2) 

Where   and   are the system outputs,    the input of  ,    the input of  ,   the 

time delay,  ̂(   )  is the predicted value x at time     , and  ̂(   ) is the predicted 

value y at time    .  
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In the NARX model,  ̂(   ) together with  ( )  (   )    (    ) can be 

the inputs of the function of   ( ) when they have significant impact on the output 

of  ̂(   ). Equation (3.2) can be modified to Equation (3.3) under this situation.  

 ̂(   )    ( ( )  (   )    (     )  ̂(   )  ( )  (  

 )      (    )   ( )   (   )     (     ))                                                (3.3) 

3.2.2 Problem formulation   

From the designer’s perspective  the HVAC system should satisfy the peak load 

of a building. However, usually the system delivers a partial load. It may operate at its 

full capacity for a limited time only. In this chapter, the HVAC system consumed energy 

includes electricity (            ) and natural gas (    ). The electricity is used to power a 

supply fan (   ), return fan (   ), outside air injection fan (    ), chillers (    ), and 

pumps (     ). Natural gas is used as reheating source by the variable air volume boxes. 

Therefore, the total HVAC energy (      ) is as expressed in Equation (3.4).   

                                                                                                       (3.4) 

Where the energy consumed in electricity form (            ) can be expressed in 

Equation (3.5).  

                                                                                 (3.5) 

The energy consumed in natural gas form (    ) is derived from Equations (3.6) – 

(3.7).  

                                                                                                        (3.6) 

               (         )                                                (3.7) 



www.manaraa.com

32 

 

 
 

Where      is measured in Watt-hour (Wh) and      is the natural gas measured 

in British thermal unit (BTU), LPGPM is the water flow rate of a loop pump 

(gallon/min), LSWT is the supply water temperature ( ), LRWT is the return water 

temperature ( ), T is the time span (hour), 0.293 is the conversion factor from BTU to 

Wh, 500 is the conversion factor (BTU min/gallon    ) for pure water used in the 

pump. To minimize the total energy consumption, two functions should be first 

established: the function for predicting the energy consumption and the function for 

predicting indoor temperature with relevant parameters of the HVAC system as inputs.  

3.3 HVAC Predictive Model 

3.3.1 Data description 

The data set used in this research was collected from an experiment conducted at 

the Energy Resource Station (ERS) operated by the Iowa Energy Center. The ERS is an 

energy laboratory for testing and demonstration of commercial HVAC systems. It has 

two test areas, A and B, equipped with identical devices and four thermal zones.  Each 

thermal zone has a variable air volume (VAV) box connected to the corresponding air 

handling unit (AHU) to maintain the thermal comfort of the zone. Weather data has been 

collected by sensors installed around the building. The control of the HVAC system 

involves two set points, the AHU static pressure set point (SA-SPSPT) and the supply air 

temperature set point (SAT-SPT) that were adjusted in the data collection experiment to 

reflect a range of the HVAC system states. In particular the SP-SPT set point was varied 

from 1.2 in. WG (0.3 kPa) to 1.8 in. WG (0.45 kPa) at 0.2 in. WG (0.05 kPa) increments, 

while the SAT-SPT varied from 50°F (10°C) to 65°F (18.33°C) at 1°F (0.556°C) 

increment. The data on more than 300 parameters was recorded at one-minute sampling 

intervals. The experiment was conducted between July 31 to August 15, 2010, and 

September 21 to October 7, 2010. The data used in this research includes three subsets. 

Data set 2 of 2065 instances was used to train the predictive models, while data set 3 and 
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data set 4, each with 442 instances, was used to test and validate the models. These data 

sets are summarized in Table 3.1. (Note that the data in Table 3.1 is expressed in 30-min 

intervals derived from the original 1-min data).  

Table 3.1 Description of data sets 

Data Set 

No. 
Data Set Type Time Period Number of Instances 

1 Entire data set 07/31-08/15/2010 & 09/21-10/07/2010 2949 

2 Training data set Randomly selected from data set 1 2065 

3 Test data set Randomly selected from data set 1 442 

4 Validation data set Randomly selected from data set 1 442 

3.3.2 Parameter selection 

Parameter selection is performed to eliminate parameters of less importance to the 

model to enhance comprehensibility, scalability, and often the accuracy of the resulting 

models [48]. Table 3.2 includes 21 parameters that were selected as the candidates for 

building the models discussed later in this chapter. Boosting tree is a learning algorithm 

for ranking the importance of parameters for prediction. According to [49, 50], the 

boosting tree algorithm has demonstrated good performance in parameter selection and 

therefore it is utilized in this chapter for selecting parameters. Furthermore, since the 

HVAC system is dynamic, the system state and energy consumption are significantly 

influenced by past values and the system parameters. Correlation analysis has been used 

to determine the relationship between the system state and energy consumption with their 

past values at different time steps. Figures 3.1 and 3.2 illustrate the relationships between 

energy consumption and indoor room temperature with their previous values. Figure 3.3 

shows the relationship between energy consumption and indoor room temperature at 

different time steps. Correlation analysis has determined the relationship between the 

system state and the energy consumption with the system inputs at different time steps.  
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Figure 3.4 shows the relationship between the energy consumption and the supply fan 

speed at different time steps. By combining the correlation analysis with the boosting tree 

algorithm, the parameters, listed in Tables 3.3 and 3.4, at different states have been 

selected to build the energy consumption model and the indoor room temperature model.  

Table 3.2 Candidate parameters selected based on domain knowledge 

Parameter Type 
Parameter 

Name 
Description Unit 

Optimized input 

parameter 

SAT-SPT AHU supply air temperature set point °F (°C) 

SASP-SPT 
Supply air duct static pressure set 

point 
in. WG ( kPa) 

Input parameter 

CHWC-VLV Chilled water coil valve position % Open 

SA-HUMD Supply air humidity % RH 

MA-TEMP Mixed air temperature °F (°C) 

CHWC-EWT 
Chilled water coil entering water 

temperature 
°F (°C) 

SA-CFM Supply air fan speed CFM 

RA-CFM Return air fan speed CFM 

RM-TEMP Room temperature °F (°C) 

OA-TEMP Outside air temperature °F (°C) 

OA-HUMD Outside air humidity % RH 

OA-CO2 Outside air CO2 concentration PPM 

IR-RADIA Infrared radiation B/HFt2 

SOL-HORZ Solar normal flux B/HFt2 

SOL-BEAM Solar beam B/HFt2 

BAR-PRES Barometric pressure mBar 

WIND-VEL Outside wind velocity MPH 

WIND-DIR Outside wind direction Deg 

System state 
RM-HUMD Room humidity % RH 

RM-TEMP Room temperature °F (°C) 

System output ENERGY 
Energy consumed  by the HVAC 

system 
Wh 
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Figure 3.1 Correlation coefficient between energy consumption and its previous values at 

different time steps 

 
Figure 3.2 Correlation coefficient between room temperature and its previous values at 

different time steps 
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Figure 3.3 Correlation coefficient between energy consumption and room temperature at 

different time steps 

 
Figure 3.4 Correlation coefficient between energy consumption and supply air fan speed 

at different time steps 
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Table 3.3 Parameters selected for building energy consumption model at time t + d 

Parameter Parameter Name Description 

( )y t  
Energy 

consumption 
Energy consumption at time t 

( )y t d  
Energy 

consumption 
Energy consumption at time t - d 

( 2 )y t d  
Energy 

consumption 
Energy consumption at time t - 2d 

( )x t d  
RM-TEMP Estimated room temperature at time t + d 

( )x t  RM-TEMP Room temperature at time t 

( )x t d  RM-TEMP Room temperature at time t - d 

1( )yv t
 OA-HUMD Outside air humidity at time t 

2 ( )yv t
 OA-TEMP Outside air temperature at time t 

3 ( )yv t
 SA-HUMD Supply air humidity at time t 

4 ( )yv t
 SOL-HORZ Solar normal flux at time t 

5 ( )yv t
 RA-CFM Return air fan speed at time t 

5 ( )yv t d
 RA-CFM Return air fan speed at time t - d 

5 ( 2 )yv t d
 RA-CFM Return air fan speed at time t  2d 

6 ( )yv t
 SA-CFM Supply air fan speed at time t 

6 ( )yv t d
 SA-CFM Supply air fan speed at time t - d 

6 ( 2 )yv t d
 SA-CFM Supply air fan speed at time t- 2d 

1( )c t d  SAT-SPT Supply air temperature set point at time t + d 

2 ( )c t d  SASP-SPT 
Supply air duct static pressure set point at time t 

+ d 

3.3.3 Model construction 

In this section, a multi-layer perception (MLP) ensemble algorithm is used to 

build the predictive models for energy consumption and indoor room temperature as it 

outperforms other algorithms including the chi-squared automatic interaction detector 

(CHAID), classification and regression tree (C&RT) algorithm, support vector machine 

(SVM), multi-layer perception (MLP), boosting tree, random forest, and multivariate 

adaptive regression spline (MARSpline) algorithms [34]. The models constructed by the 

MLP ensemble are expressed as Equations (3.8) – (3.9):    
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1 1 2 3 4 5 6

7 1 2

( ) ( ( ), ( ), ( 2 ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ))

x x x x x x

x

x t d f x t x t d x t d y t v t v t v t v t v t v t

v t c t d c t d

   

 
           (3.8) 

               

2 1 2 3 4 5

5 5 6 6 6 1 2

( ) ( ( ), ( ), ( 2 ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),

( ), ( 2 ), ( ), ( ), ( 2 ), ( ), ( ))

y y y y y

y y y y y

y t d f y t y t d y t d x t d x t x t d v t v t v t v t v t

v t d v t d v t v t d v t d c t d c t d

     

     
          

(3.9) 

where  ̂(   ) is the energy consumption of the HVAC system (objective 

function),  ̂(   ) is the room temperature (objective function);    (   ) and   (  

 ) represent the supply air temperature set point and the supply air duct static pressure set 

point (decision variables).  

Table 3.4 Parameters selected for building the indoor temperature model at time t + d  

Parameter Point Name Description 

( )x t  RM-TEMP Room temperature at time t 

( )x t d  RM-TEMP Room temperature at time t - d 

( 2 )x t d  RM-TEMP Room temperature at time t  2d 

( )y t  
Energy 

consumption 
Energy consumption at time t 

1( )xv t  RA-CFM Return air fan speed at time t 

2 ( )xv t
 SA-CFM Supply air fan speed at time t 

3( )xv t  MA-TEMP Mixed air temperature at time t 

4 ( )xv t
 SA-HUMD Supply air humidity at time t 

5 ( )xv t
 OA-TEMP Outside air temperature at time t 

6 ( )xv t
 OA-CO2 Outside air CO2 concentration at time t 

7 ( )xv t
 CHWC-VLV Chilled water coil valve position at time t 

1( )c t d  SAT-SPT Supply air temperature set point at time t + d 

2 ( )c t d  SASP-SPT 
Supply air duct static pressure set point at time t + 

d 

In order to obtain the concrete form of   ( ) and   ( ) in Equations (3.8) and (3.9), 

data set 1 (2949 data instances) was divided into three parts: training data set (2065 data 

instances), test data set (442 data instances), and validation data set (442 data instances) 

as shown in Table 3.1. In the next sub-section, the performance of the predictive models 

will be validated. 
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3.3.4 Model validation 

To evaluate the performance of the predictive models built by the MLP ensemble 

algorithm, the metrics in Chapter 2 (Equations (2.17) – (2.22)) are used. The data in 

Table 3.5 shows the performance of the predictive models built by the MPL ensemble 

algorithm. Figure 3.5 compares the predicted and observed values of the energy 

consumption of HVAC systems on 442 30-min data instances drawn from data set 3. The 

values obtained from the energy consumption predictive model in Figure 3.6 follow 

closely to the observed values. Figure 3.7 compares the predicted and observed values of 

the room temperature on the same data instances with the energy consumption generated 

by the predictive model. The detailed measurement of the performance for the two 

models is summarized in Table 3.5. As shown in Table 3.5, the accuracy for the energy 

consumption predictive model on validation data set is 91.7%. For the temperature 

predictive model, the accuracy on the validation data set is 99.6%. Therefore, the two 

predictive models are selected to construct the overall optimization model. 

Table 3.5 Prediction accuracy of the MLP ensemble algorithm of energy consumption 

and room temperature 

Objective Data Set MAE MAPE Std_AE Std_MAPE 

Energy consumption 

Training 153.975 0.064 143.086 0.166 

Test 179.836 0.067 217.791 0.083 

Validation 213.398 0.083 311.036 0.200 

Room temperature 

Training 0.269 0.004 0.263 0.004 

Test 0.287 0.004 0.285 0.004 

Validation 0.308 0.004 0.312 0.004 
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Figure 3.5 Validation of the energy consumption model with 442 data instances 

 
Figure 3.6 Validation of the room temperature model with 442 data instances 
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     3.4.1 Optimization model formulation 
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acceptable range in search of the optimal supply air temperature and the supply air duct 

static pressure set points at the time      . The observed room temperature can be 

calibrated by the sensors originally installed in the system while the observed energy 

consumption can be computed from Equations (3.4)-(3.7). The constraints in the model 

are identified by setting the lower and upper bounds of the control parameters and 

assigning an acceptable range for room temperature. These settings are restricted within 

the following limits: 

 The supply air temperature set point varies from 50°F (10°C) to 64°F 

(17.7 °C).  

 The supply air duct static pressure set point varies between 1.2 in. WG 

(0.3 kPa) to 1.8 in. WG (0.45 kPa). 

 The room temperature is maintained between 70.5°F (21.39°C) and 71.5°F 

(21.94°C). 

These three limits are determined by the design of the HVAC system and 

preferences of the occupants. Therefore, the optimization model is formulated as 

Equation (3.10): 

1 2( ), ( )

1 1 2 3 4 5 6 7 1 2

2

min ( )

subject to:

 ( ) ( ( ), ( ), ( 2 ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

                   ( ) ( ( ), ( ), ( 2 ), ( ), ( ), (

c t d c t d

x x x x x x x

y t d

x t d f x t x t d x t d y t v t v t v t v t v t v t v t c t d c t d

y t d f y t y t d y t d x t d x t x t

 



     

     1 2 3 4 5

5 5 6 6 6 1 2

1

2

), ( ), ( ), ( ), ( ), ( ),

                   ( ), ( 2 ), ( ), ( ), ( 2 ), ( ), ( )

 50 ( ) 64

 1.2 ( ) 1.8

 70.5 ( ) 71.5

y y y y y

y y y y y

d v t v t v t v t v t

v t d v t d v t v t d v t d c t d c t d

c t d

c t d

x t d



     

  

  

  

   (3.10) 

where   ̂(   ) is the predicted value of indoor room temperature by applying 

the original supply air temperature set point   (   ) and the supply air duct static 

pressure set point    (   ). In minimizing the energy consumption at time stamp    
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  , the room temperature is maintained within a pre-set range. The constrained model 

(3.10) is transformed to a bi-objective optimization model with the objective functions 

(3.11) and (3.12): 

      ̂(   )                                                                                              (3.11) 

                 ̂(   )          ̂(   )                              (3.12) 

Then the bi-objective optimization model is presented as Equation (3.13): 

1 2( ), ( )

1 1 2 3 4 5 6 7 1 2

2 1 2

min( 1, 2)

subject to:

( ) ( ( ), ( ), ( 2 ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

( ) ( ( ), ( ), ( 2 ), ( ), ( ), ( ), ( ), (

c t d c t d

x x x x x x x

y y

Obj Obj

x t d f x t x t d x t d y t v t v t v t v t v t v t v t c t d c t d

y t d f y t y t d y t d x t d x t x t d v t v

 

     

      3 4 5

5 5 6 6 6 1 2

1

2

), ( ), ( ), ( ),

                   ( ), ( 2 ), ( ), ( ), ( 2 ), ( ), ( )

 50 ( ) 64

 1.2 ( ) 1.8

y y y

y y y y y

t v t v t v t

v t d v t d v t v t d v t d c t d c t d

c t d

c t d

     

  

  
   

(3.13) 

Note that when Obj2 is equal to 0, all constraints of the model in Equation (3.13) 

are satisfied.  

3.4.2 Multi-objective particle swarm optimization algorithm 

Since the optimization model derived from the MLP ensemble algorithm is 

complex, it is difficult to solve it with traditional algorithms. Particle swarm optimization 

(PSO) inspired by natural bird flocks is a suitable optimization algorithm [36]. The PSO 

algorithm is easy to implement and there are few parameters to adjust. In recent years, 

many modifications have been made to the original algorithm [58]. Among those 

modifications, constant inertia weight particle swarm optimization (CIWPSO), 

constricted particle swarm optimization (CPSO), and decreasing inertia weight particle 

swarm optimization (DIWPSO) have good performance in most cases. Hence, these three 

PSO variants were applied in this research. The PSO in its original form [58] is presented 

next: 
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Step 1: Initialize a group of particles with random positions      and velocities 

      in the search space; 

Perform the next steps until the pre-set requirements are satisfied. 

Step 2: For each particle, compute fitness for each particle by using 

function   ( ). 

Step 3: Compare each particle’ fitness with its past best value,       . If current 

value is better than       , then using current value instead of and update       with 

current location   ; compare all of the particles’ and find the best one assigned as and set 

its current location as      . 

Step 4: Update the particles’ velocities and positions based on the follo ing 

Equation (3.14): 

1 2(0, ) ( ) (0, ) ( )i i i i g i

i i i

v v U p x U p x

x x v

       

                                                                  (3.14) 

Step 5: If the stop criterion is satisfied,      is the final solution and the final 

optimal fitness.  

Note that  (   ) represents the uniform distribution in [   ]; and   should be 

within the range[          ].  

In order to get CIWPSO, CPSO, and DIWPSO, the concrete modifications to the 

original PSO are listed in the following: 

1) For constant inertia weight particle swarm optimization Equation (3.14) is 

transformed into Equation (3.15). 

1 2(0, ) ( ) (0, ) ( )i i i i g i

i i i

v v U p x U p x

x x v

        

                                                  (3.15) 
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Where is the inertia weight that can reduce the importance of      to 

satisfy the requirement of controlling the scope of the search? For 

constant inertial particle swarm optimization  is a constant.  

2) For constricted particle swarm optimization Equation (3.14) is expresses 

as Equation (3.16). 

 

1 2( (0, ) ( ) (0, ) ( ))i i i i g i

i i i

v v U p x U p x

x x v

        

                                               (3.16) 

where   is the constriction coefficient that can control the convergence of 

the particle and prevent explosion of the particle’s velocity. Usually this 

constriction coefficient is set to 0.7298.  

3) For decreasing inertia weight particle swarm optimization Equation (3.14) 

is expressed as Equation (3.17).  

 
1

1 2

1 1

(0, ) ( ) (0, ) ( )t t t t t t t

i i i i i i

t t t

i i i

v v U p x U p x

x x v

  

 

      

                                              (3.17) 

In equation (3.17),    is a time function. It is updated based on Equation 

(3.18).  

                                                  max

max min min

max

( )t t t

t


   




  

                                           (3.18) 

To adopt the above three algorithms for solving a multi-objective optimization 

model, the following modifications are made according to [59].  

Modification 1: Create a set   to store the non-dominated solutions for     particle 

up to the current time. 

Modification 2: Create a set   to store the non-dominated solutions from all    at 

each iteration. 
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Modification 3: Create an external set   to store the non-dominated solutions 

from   at each iteration. 

Modification 4: Process to update  : At each iteration, compare the current 

particle solution with the stored solutions. Dominated solutions are removed while non-

dominated solutions are kept. 

Modification 5: Process to update  : At each iteration, copy all to   where 

dominated solutions are removed. 

Modification 6: Process to update external non-dominated set  : At each iteration, 

copy solutions from   to  . Remove the dominated solutions from  . 

Modification 7: Process to generate local and global best solution: For each 

particle at each iteration, the Euclidean distance among solutions from the corresponding 

local non-dominated set and global non-dominated set are measured. The pair with 

minimum distance in the search space is selected as the local and global best for this 

particle in under-taking the later velocity and position updating process. 

In contrast to CIWPSO, DIWPSO, and CPSO that were designed for solving 

single objective models, multi-objective CIWPSO (MO-CIWPSO), multi-objective 

DIWPSO (MO-DIWPSO), and multi-objective CPSO (MO-CPSO) are aimed at solving 

multi-objective models. Figure 3.7 shows the flow chart for the multi-objective particle 

swarm optimization algorithm.  

3.4.3 Optimization results and analysis 

To solve the optimization model represented by (3.10), the above-mentioned three 

multi-objective PSO variants are applied and the detailed parameters for the algorithms 

are listed in Table 3.6.  
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Initialize a set Si to store non-dominated solutions for ith particle

Initialize a set G to store non-dominated solutions 
for the population at each iteration

Initialize a set E to store non-dominated solutions 
for the population throughout all iterations

      Evaluate

Compute fitness for each particle based on the objective functions

      Update
Update position and velocity for each particle

Update Si for each particle

Update G and E

Criterion

End

N

Y

 
Figure 3.7 The flow chart of multi-objective particle swarm optimization algorithm 

Data set 4 in Table 3.1 is used to run the variants of the PSO algorithm defined in 

Table 3.6. The optimal solution is selected from the final elite set based on the weighted 

normalized objective function (3.19).  

min min
1 2

max min max min

1 1 2 2

1 1 2 2

Obj Obj Obj Obj
Obj w w

Obj Obj Obj Obj

 
 

                                                         
(3.19)            

where    and    are the user-defined weights indicating the preference of the 

corresponding objective,         and         are the maximum and the minimum 
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values of Obj1  in the final elite set. Similar notation is used for         and        . 

Note that        , with   and   being either constants or functions of other 

objectives.  

Table 3.6 Settings for the three multi-objective PSO variants 

Algorithm Settings 

MO-CIWPSO 

Acceleration coefficients are set to ϕ1=ϕ2=2.05. Inertia 

weight is set to 0.95. Population size and the number of 

iterations are set to 100 and 50, respectively.  

MO-DIWPSO 

Acceleration coefficients are set to ϕ1=ϕ2=2.05. Linearly 

decreasing inertia weight from 0.9 to 0.4 and the final value is 

reach at the end of the run. Population size and iteration 

number are set to 100 and 50, respectively. 

MO-CPSO 

Acceleration coefficients ϕ=4.1. Constriction factor χ=0.729. 

Population size and the number of iterations are set to 100 

and 50, respectively. 

Table 3.7 presents two scenarios that represent different preferences to the 

objectives. Scenario 1 means that energy consumption is the only criterion to be 

considered when selecting the single best solution among the non-dominated solutions. 

Scenario 2 means energy consumption and room temperature are both important criterion 

when selecting the single best solution among the non-dominated solutions.  

Table 3.7 Two scenarios involving different weight values 

Scenario Weights Description 

1 1 21, 0w w   No AQI constraints 

2 
2 2

1 2

1        y [70.5,71.5] 0        y [70.5,71.5]
,

0.5    otherwise 0.5    otherwise

if if
w w

  
  
 

 
Consider room 

temperature as 

constraint 

In order to eliminate the bias of the algorithms, each of the three multi-objective 

PSO variants was run ten times and the average values and the corresponding standard 
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deviation were calculated. The results provided by the three variants of the PSO 

algorithm are listed in Table 3.8 that illustrates the multi-objective DIWPSO outperforms 

other two multi-objective PSO variants, and therefore, the DIWPSO is used in the 

following analysis.  

Table 3.8 Performance of the three multi-objective PSO variants 

Algorithm Energy Savings in Scenario 1 Energy Savings in Scenario 2 

MO-CIWPSO 22.77%  0.12% 21.83%  0.13% 

MO-DIWPSO 23.00%  0.06%
 

22.04%  0.13% 

MO-CPSO 22.86%  0.13% 21.89%  0.12% 

Figures 3.8- 3.9 compare the observed and the optimized values on data set 4 for 

Scenario 1 and 2. In most cases, the energy consumption of the optimized process is less 

than the observed one, which means the proposed model can save energy.  Figures 3.10-

3.11 illustrate the room temperature for Scenario 1 and 2.  In most cases, the indoor room 

temperature can be kept in the range from 68°F (20°C) to 72°F (22.22°C) (desired room 

temperature range).  Since Scenario 2 considers the room temperature as a constraint 

when selecting the single best solution among the non-dominated solutions, the number 

of the points which room temperature violates the desired room temperature range is less 

than the one in Scenario 1. Figures 3.12-3.13 present the supply air temperature set point 

and the supply air duct static pressure set point. Based on these set points, the energy 

savings which is the difference between the observed and optimized energy consumption 

shown in Figures 3.8 and 3.9 can be achieved.  

The actual implementation and validation of the DIWPSO algorithm for Scenario 

2 is discussed in the next section 
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Figure 3.8 Comparison between the observed and optimized energy consumption in 

Scenario 1 

 
Figure 3.9 Comparison between the observed and optimized energy consumption in 

Scenario 2 
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Figure 3.10 Comparison between the observed and optimized room temperature in 

Scenario 1  

 
Figure 3.11 Comparison between the observed and optimized room temperature in 

Scenario 2  
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Figure 3.12 Recommended supply air temperature set point compared to the observed 

value in Scenario 1  

 
Figure 3.13 Recommended supply air duct static pressure set point compared to the 

observed value in Scenario 1  

3.5 Model Implementation and Result Analysis 
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Center from May 15 to 22, 2011. In the experiment, AHU-A and AHU-B were operated 

simultaneously. The AHU-A and AHU-B serve four identical thermal areas. The only 

difference between the two systems was that the AHU-A was controlled by the proposed 

approach while the AHU-B was controlled by the traditional approach. The experiment 

included two stages. The first stage from May 15 to 20, 2011 aimed at collecting data 

from the two systems while the second stage from May 21 to 22, 2011 was to establish 

the energy consumption bias between the two systems controlled by the traditional 

approach. At the first stage, AHU-A was controlled by the optimization model while 

AHU-B operated with fixed set points: the supply air temperature set at 55°F (12.78°C) 

and the supply air duct static pressure set at 1.4 in. WG (0.35 kPa). Since these two 

systems use identical devices and they serve identical test areas, the difference in energy 

consumption points to the effectiveness of the proposed optimization approach. As shown 

in Figure 3.14, the energy consumption for AHU-A and AHU-B are 568.88and 781.16 

kWh, respectively. AHU-A therefore consumed less energy than AHU-B, thus producing 

an energy savings of 27.18%. Figure 3.15 illustrates the room temperature for AHU-A 

and AHU-B. Although the range of indoor room temperature of AHU-A is larger than for 

AHU-B, it usually falls in the normal range of 68°F (20°C) to 72°F (22.22°C). Only for a 

limited time does it exceed the present constraints. Thus, the indoor room temperature is 

considered to be at an acceptable level. In the second stage, the two systems were 

operated with identical fixed set points: the supply air temperature was set at 55°F 

(12.78°C) and the supply air duct static pressure was set at 1.4 in. WG (0.35 kPa). As 

shown in Figure 3.16, the energy consumption of AHU- A and AHU-B are 277.22 and 

266.49 kWh, respectively. AHU- A therefore consumes 3.87% more energy than AHU- 

B for the same control settings. Considering for the bias between the two systems, the 

energy savings provided by the optimization model are adjusted to 29.99%.  Figure 3.17 

show the adjusted energy comparison after the adjustment.  
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Figure 3.14 Energy consumption of AHU-A and AHU-B at the first stage 

 
Figure 3.15 Room temperature of AHU-A and AHU-B at the first stage 
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Figure 3.16 Comparison of energy consumption of AHU-A and AHU-B for the same set 

points at the second stage 

 
Figure 3.17 Comparison of the bias-adjusted energy consumption of AHU-A and AHU-B 
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HVAC system in order to provide energy savings while maintaining the room 

temperature within an acceptable range. Three modified multi-objective particle swarm 

optimization (MO-PSO) algorithms were applied to solve the optimization model. The 

computational results indicated that the multi-objective decreasing inertia weight particle 

swarm optimization (MO-DIWPSO) outperformed two other variants of the same 

algorithm. The MO-DIWPSO algorithm was implemented on the actual HVAC system. 

The experiments demonstrated that the optimization model saved 29.99% in energy 

consumption. Future research will focus on improving the accuracy of the model and 

approaches to improve handling of user preferences. 
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CHAPTER 4 

CONTROLLING AN HVAC SYSTEM WITH SWARM 

INTELLIGENCE AND DATA-DRIVEN APPROACH 

4.1 Introduction 

In this chapter, a robust control strategy for an HVAC system, shown in Figure 

4.1, is presented. A time-series approach is used to describe the system, and then a neural 

network is applied to develop a predictive model of energy consumption, which includes 

the energy consumed by chillers, pumps, fans, and reheating natural gas. The model 

involves optimization of two set points, the supply air static pressure and the supply air 

temperature, with a multi-objective particle swarm optimization algorithm.  It is noted 

that the changes of the supply air temperature are constrained to small increments due to 

the considerable time needed to arrive at a steady state. In addition, the two set points 

minimize the energy consumption while maintaining the indoor temperature at an 

acceptable interval. To meet these requirements, a particle swarm optimization algorithm 

is integrated with fuzzy rules for solving the optimization models. The proposed 

approach has been validated on an industrial HVAC system. 

V-1 V-3
V-4

Damper

Damper

Damper

Return air

Supply air

Exhaust air

Outside air

Cooling coil Heating coil

Valve Valve
Valve

VAV 

terminals

Diffuser

Exhaust 

grille

Mixed air

 
Figure 4.1 Schematic diagram of a typical HVAC system 
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4.2 Data Description 

The data set in this research was obtained from an experiment conducted by the 

Energy Resource Station (ERS) in Ankeny, Iowa, which is an energy laboratory for 

testing and demonstrating commercial HVAC systems. The experiment aimed to assess 

the relationship between the states of the HVAC system, such as energy consumption and 

indoor temperature  and t o of the system’s controllable set points – supply air static 

pressure set point (SA-SPSPT) and supply air temperature set point (SAT-SPT). In 

particular, SA-SPSPT varied from 0.4 in. WG (0.1 kPa) to 1.8 in. WG (0.45 kPa) with 0.2 

in. WG (0.05 kPa) increments; whereas SAT-SPT varied from 50°F (10 °C) to 65 °F 

(18.33 °C) at 1 °F (0.556 °C) increments over the course of the experiment. 

Corresponding to the change of the two set points, more than 300 parameters, including 

weather conditions, energy consumption, and indoor temperature, was recorded at 1-

minute intervals by sensors installed in the systems. The data was collected July 31– 

August 16, 2009; September 21 – October 7, 2009; August 17 – September 6, 2010; and 

June 22 to July 27, 2011, respectively. Table 4.1 describes the experimental data in detail. 

The data set used in this research uses a 30-min sampling interval. It was derived from 

the originally collected 1-min data. 

Table 4.1 Description of data sets 

Number of 

data set 
Data Set Type Time Period 

Number of 

Instances 

1 Entire data set 
07/31-08/15/2010; 09/21-10/07/2010; 

08/01-09/06/2010; 06/22-07/27/2011 
3532 

2 Training data set Randomly selected from data set 1 2472 

3 Test data set Randomly selected from data set 1 529 

4 Validation data set Randomly selected from data set 1 527 
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4.3 Control of the HVAC System 

In this research, the HVAC system is controlled by adjusting supply air duct static 

pressure set point (SASP-SPT) and supply air temperature set point (SAT-SPT); 

however, the working characteristics of the chillers and fans contribute to the time lag 

needed for the actual supply air duct static pressure and supply air temperature to achieve 

the values dictated by the set points.  Figure 4.2 indicates that the time for the actual 

supply air temperature entering a steady state of the new set point, in the case of 65 °F to 

50 °F, would be about 12 minutes while the case of 50 °F to 65 °F, about 32 minutes. 

Unlike supply air temperature, supply air duct static pressure can achieve a steady state 

much faster (see Figure 4.3).  

 
Figure 4.2 Set point and actual supply air temperature 
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Figure 4.3 Set point and actual static pressure in supply air duct  

To mitigate the impact of the time lag of the supply air temperature, a control 

strategy combining a data-driven approach and a rule-based particle swarm optimization 

is used in this research. As illustrated in Figure 4.4, two predictive models (i.e., the 

energy consumption prediction model and the indoor temperature prediction model) are 

built by data mining algorithms. The two models are then used in the optimization model.  

To mitigate the impact of the system time lag on achieving a steady state, two 

approaches are applied: 

 The supply air temperature changes once per hour, while the supply air 

duct static pressure set point changes every 30 min (the energy 

consumption is predicted 1-time increment and 2-time increments ahead 

for the same value of the supply air temperature, while the indoor 

temperature is predicted 1-time increment and 2-time increments ahead for 

different values of the supply air duct static pressure set point); 

 A set of rules is used by the particle swarm optimization algorithm to 

reduce the increments for updating the supply air temperature set point.  
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Figure 4.4 Diagram of the HVAC system control 

In this research, fuzzy logic [60, 61] is used to model the supply air temperature 

set point. Based on the domain knowledge and expert experience, intervals of the 

parameter used by fuzzy rules are defined (see Table 4.2). Figures 4.5 and 4.6 illustrate 

the membership functions for the supply air temperature set point and the indoor 

temperature, respectively. For instance, if the current supply air temperature is 55 °F (13 

°C) and the current indoor temperature is 69 °F (21 °C), the following rule listed in Table 

II is fired: IF SAT-SPT IS medium AND indoor temperature IS medium, THEN the 

change interval for next SAT-SPT IS [-3, 3]. The fuzzy transformation process is 

expressed in Equation (4.1).  

         (   )          ( )   (        ( )      ( ))                      (4.1) 
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Table 4.2 Rules for deciding the intervals of the supply air temperature set point  

Parameter 
Low Indoor 

Temperature 

Medium Indoor 

Temperature 
High Indoor Temperature 

Low SAT-SPT [-10, 10] [-6, 6] [-3, 3] 

Medium SAT-SPT
 

[-6, 6] [-3, 3] [-6, 6] 

High SAT-SPT
 

[-3, 3] [-6, 6] [-10,10] 

 
Figure 4.5 The membership function of the supply air temperature set point 

 
Figure 4.6 The membership function of the indoor temperature 
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4.4 Model Development 

4.4.1 Parameter selection 

Before a predictive model is developed, it is essential to select most important 

parameters to ensure comprehensibility, scalability, and accuracy of the resulting models 

[48]. The boosting tree algorithm is applied for parameter selection as it has demonstrated 

good performance [49]. Tables 4.3 and 4.4 include the parameters used as the inputs to 

the energy consumption prediction model and the indoor temperature prediction model 

selected by the correlation coefficient analysis approach and the boosting tree algorithm. 

Table 4.3 Parameters selected for building the energy consumption model 

Parameter Parameter Name Description Unit 

Energyy
 

Energy 

Consumption 

HVAC-consumed Energy in 30 

min 
kWh 

SASP SPTx   SASP-SPT 
Supply air duct static pressure set 

point 
in.WG (kPa) 

SAT SPTx   SAT-SPT 
AHU supply air temperature set 

point 
°F (°C) 

OAI TEMPv   OAI-TEMP Outside air inlet temperature °F (°C) 

CHWC VLVv   CHWC-VLV Chilled water coil valve position % Open 

MA TEMPv   MA-TEMP Mixed air temperature °F (°C) 

CHWC MWTv   CHWC-MWT 
Chilled water coil mixed water 

temperature 
°F (°C) 

IR RADIAv   IR-RADIA Infrared radiation B/h ft
2 
(W/m

2
) 

OA TEMPv   OA-TEMP Outside air temperature °F (°C) 

SOL HORZv   SOL-HORZ Solar normal flux B/h ft
2
 (W/m

2
) 

SA CFMv   SA-CFM Supply air fan speed CFM 

SA HUMDv   SA-HUMD Supply air humidity % RH 

TEMPy
 RM-TEMP Indoor temperature °F (°C) 

4.4.2 Predictive model formulation 

A typical HVAC system includes components such as fans, cooling coil, heating 

coil, humidifier, filter and ductwork. Due to the physical properties of these components 
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and the structure of the building, HVAC is a dynamic, complex, and time-delayed 

system. A time-series approach – namely, nonlinear auto-regression with external inputs 

– is applied to model the dynamic HVAC system. In model development, 1-time 

increment and 2-time increment predictions are adopted. The boosting tree algorithm is 

also applied to determine the time lag of each parameter and to decide the time increment 

with the greatest impact on the system state. The energy consumption and the indoor 

temperature prediction models are expressed in Equations (4.2) - (4.5). 
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Table 4.4 Parameters selected for building the indoor temperature model 

Parameter Parameter Name Description Unit 

TEMPy  RA-TEMP Indoor temperature °F (°C) 

SASP SPTx   SASP-SPT 
Supply air duct static pressure set 

point 
in.WG (kPa) 

SAT SPTx   SAT-SPT 
AHU supply air temperature set 

point 
°F (°C) 

Energyy
 Energy consumption 

Energy consumed by HVAC 

systems in 30 min 
kWh 

SA CFMv   SA-CFM Supply air fan speed CFM 

RA TEMPv   RA-TEMP Return air temperature °F (°C) 

OAI CFMv   OAI-CFM Outside air injection air flow CFM 

The multi-layer perception (MLP) ensemble approach is used to build predictive 

models of energy consumption and indoor temperature. Since it has supervised-learning 

pattern recognition and parallel distributed processing ability, MLP can approximate 

system with complex and nonlinear problems.  The MLP ensemble performs better than 

other algorithms, such as the chi-squared automatic interaction detector (CHAID), 

classification and regression tree (C&RT) algorithm, support vector machine (SVM), 

boosting tree, random forest, and the multivariate adaptive regression spline 

(MARSpline) algorithm [31]. To derive the model expressed in Equations (4.2)-(4.5), 

data set 1 (3,532 data instances) was divided into three parts: a training data set (2,472 

data instances), a test data set (529 data instances), and a validation data set (527 data 

instances). 

4.4.3 Model validation 

The fourth metrics in Chapter 2 (Equations (2.17) – (2.22)) are also applied here 

to validate the predictive models in the above section. The data in Table 4.5 illustrates 

performance of the energy consumption and the indoor temperature models built by the 

MLP ensemble algorithm. The MAPE values for the indoor temperature prediction model 

in Table V indicate satisfactory accuracies of 99.6% and 99.3% using the predictive 
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models for 1-time increment and 2-time increment predictions, respectively. The MAPE 

value of the energy consumption for 1-time increment predictions is 92.3% for validation 

data set. The 2-time increment prediction of energy consumption is 88.2% accurate. As 

shown in Figures 4.7-4.10, the correlation coefficients between the predicted values and 

the corresponding observed values are 0.965, 0.937, 0.976, and 0.951 for energy 

consumption 1-time increment and 2-time increment models, indoor temperature 1-time 

increment and 2-time increment models, respectively. Therefore, the four predictive 

models, including the 1-time increment and 2-time increment predictions, are employed 

to construct the overall HVAC system optimization model.  

Table 4.5 Performance of the MLP ensemble models of energy consumption and indoor 

temperature 

Objective Data Set MAE MAPE Std_AE Std_APE 

Energy 

consumption 

1 

 

Train 141.2 0.067 130.1 0.119 

Test 167.5 0.076 181.25 0.099 

Valid. 213.4 0.083 311.0 0.200 

2 

Train 196.9 0.093 189.8 0.126 

Test 213.3 0.114 284.3 0.294 

Valid. 211.7 0.118 254.2 0.418 

Indoor 

Temperature 

1 

Train 0.263 0.004 0.310 0.004 

Test 0.263 0.004 0.294 0.004 

Valid. 0.298 0.004 0.343 0.005 

2 

Train 0.447 0.006 0.474 0.007 

Test 0.422 0.006 0.417 0.006 

Valid. 0.474 0.007 0.467 0.006 
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Figure 4.7 The correlation coefficient between predicted and observed values for 1-

increment ahead prediction of energy consumption  

 
Figure 4.8 The correlation coefficient between predicted and observed values for 2-

increment ahead prediction of energy consumption 

Predicted energy consumption (kWh) = 0.146+0.9438*x; 0.95 CI

-1 0 1 2 3 4 5 6

Observed energy consumption (kWh)

-1

0

1

2

3

4

5

6

P
re

d
ic

te
d

 e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

k
W

h
)

Predicted energy consumption (kWh) = 0.2652+0.8814*X; 0.95 CI

-1 0 1 2 3 4 5 6 7 8

Observed energy consumption (kWh)

-1

0

1

2

3

4

5

6

7

8

P
re

d
ic

te
d

 e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

k
W

h
)



www.manaraa.com

67 

 

 
 

 
Figure 4.9 The correlation coefficient between predicted and observed values for 1-

increment ahead prediction of indoor temperature 

 
Figure 4.10 The correlation coefficient between predicted and observed values for 2-

increment ahead prediction of indoor temperature 
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4.5 Multi-objective Optimization Model 

4.5.1 Optimization model formulation 

To optimize and control the HVAC system, Equations (4.2) and (4.3) are used in 

the model objective.  Equations (4.4) and (4.5) are used as the constraints. Two values of 

two set points – the supply air temperature set point and the supply air duct static pressure 

set point – at time t + T and t + 2T are the decision variables of the HVAC optimization 

model. Lower and upper bounds of the control parameters and the constraint functions 

are imposed as follows:  

 The supply air temperature set point varies from 50°F (10°C) to 65°F 

(18.3 °C); 

 The change interval of the supply air temperature set point should refer to 

the fuzzy function expressed in Equation (4.1); 

 The supply air duct static pressure set point varies between 0.6 in. WG 

(0.1 kPa) and 1.8 in. WG (0.45 kPa); 

 The indoor temperature is maintained between 68°F (20°C) and 72°F 

(22.2°C). 

The above four constraints depend on the actual design of the HVAC system and 

the preferences of the occupants.  The constraints are classified as hard or soft 

constraints. Hard constraints need to always be respected, while soft constraints can, to 

some degree, be violated.  The HVAC optimization model is expressed in (4.6)-(4.18). 

Note that (4.16) and (4.17) can be considered as soft constraints:   

 

( ), ( 2 ), ( ), ( 2 )

min ( ) ( 2 )
SASP SPT SASP SPT SAT SPT SAT SPT

Energy Energy

x t T x t T x t T x t T

y t T y t T
      

                                (4.6) 
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                             (4.10) 

 

                   0.6 ( ) 1.8SASP SPTx t T                                                                                 (4.11) 

 

                  0.6 ( 2 ) 1.8SASP SPTx t T                                                                                (4.12) 

 

                  50 ( ) 65SAT SPTx t T                                                                                    (4.13) 

 

                  50 ( 2 ) 65SAT SPTx t T                                                                                  (4.14) 

 

                  ( ) ( 2 )SAT SPT SAT SPTx t T x t T                                                                          (4.15) 

 

                  68 ( ) 72TEMPy t T                                                                                       (4.16) 

 

                  68 ( 2 ) 72
TEMP

y t T                                                                                      (4.17) 
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( ) ( ( ), ( ))

SAT SPT SAT SPT TEMP SAT SPT

SAT SPT SAT SPT TEMP

x t F x t y t x t T

x t F x t y t

  

 

  

 
                                            (4.18) 

Where ( ) ( 2 )Energy Energyy t T y t T    is the sum of the predicted energy consumption at 

t + T and t + 2T, ( )TEMPy t T  and ( 2 )
TEMP

y t T  are the predicted values of indoor 

temperature at t + T and t + 2T. Applying the optimal supply air temperature set point 

( ) ( 2 )SAT SPT SAT SPTx t T x t T    and the supply air duct static pressure set point 

( )SASP SPTx t T  and ( 2 )SASP SPTx t T  . In minimizing the energy consumption at time stamp t 

+ T and t + 2T, the indoor temperature at time stamp t + T and t + 2T is maintained within 

a pre-set range. The constrained model (4.6)-(4.18) is transformed into a multi-objective 

optimization model with the objective functions (4.19)-(4.21) by converting the soft 

constraints into objective functions: 

             (   )         (    )                                                         (4.19) 

                        (   )                (   )                   (4.20) 

 

                            (    )                (    )              (4.21) 

The multi-objective optimization model is presented in (4.22). Note that, when 

Obj2 and Obj3 are equal 0, constraints (4.11)-(4.18) are all satisfied: 
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              (4.22) 

4.5.2 Multi-objective rule-based particle swarm 

optimization algorithm 

The HVAC optimization model derived from data-driven approach is non-

parametric and non-convex complex and therefore cannot be easily solved by traditional 

gradient-descent-based algorithms. Rather, a particle swarm optimization (PSO) 

algorithm inspired by the social behavior of flocks of birds and schools of fish is used 

[62]. To solve multi-objective optimization problems, the general single objective PSO 
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algorithm is extended to multi-objective PSO algorithm by integrating a Pareto optimal 

set. Since the Pareto optimal set includes many non-dominated solutions, the leader in the 

general single objective PSO has to be changed. In MOPSO, every non-dominated 

solution can be considered as a new leader, then one leader is selected using a quality 

measure reflecting the goodness of the leader. The nearest neighbor density estimator is 

used as the quality measure. It corresponds to the perimeter of the cuboid formed by the 

nearest neighbors as the vertices. The larger value of the perimeter is preferred. An 

external archive is used in MOPSO to retain non-dominated solutions. A solution enters 

the archive provided that it meets the following two standards:  

 It is non-dominated with respect to the content of the archive or  

 It dominates all the solutions in the archive.  

The steps of the MOPSO are shown next:  

Begin 

          Initialize swarm in the search space nR   

          Initialize leaders in an external archive A 

          Quality leaders 

          gen = 0  

          While gen < gen_max  

                    For each particle   

                              Select leader  

                              Update position  

                              Evaluation  

                              Update pbest  

                    EndFor  

                    Update leaders in the external archive  

                    Quality leaders  

                     gen = gen + 1  

          EndWhile  

          Report results in the external archive  

End 

 

To control the HVAC system, the rules shown in Table 4.2 are embedded in a 

multi-objective particle swarm optimization, thus leading to the multi-objective rule-

based particle swarm optimization (MORBPSO) algorithm. These rules manage the 
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update interval of the supply air temperature set point. The steps of MORBPSO are as 

follows:  

Begin 

          Initialize search space based on rule set S 

          Initialize swarm in the search space  nR  

          Initialize leaders in an external archive A 

          Quality leaders  

          gen = 0   

          While gen < gen_max  

                    For each particle  

                              Select leader  

                              Update position  

                              Evaluation  

                              Update pbest  

                    EndFor  

                    Update leaders in the external archive  

                    Quality leaders  

                     gen = gen + 1  

          EndWhile  

          Report results in the external archive  

End 

4.6 Computational Results  

4.6.1 Representative points used in optimization 

In this section, the multi-objective rule-based PSO algorithm is demonstrated with 

the nine representative points selected from the validation data set of Table 4.1. Each of 

these nine representative points listed in Table 4.6 reflects one of the rules listed in Table 

4.2. Since the multi-objective rule-based PSO algorithm provides a set of non-dominated 

solutions, a user-defined weight vector is applied to the non-dominated solutions. The 

weighted normalized objective function is expressed in Equation (4.23): 

min min min

1 2 3

max min max min max min

1 1 2 2 3 3

1 1 2 2 3 3

OBJ OBJ OBJ OBJ OBJ OBJ
OBJ w w w

OBJ OBJ OBJ OBJ OBJ OBJ

  
  

                   
(4.23)     



www.manaraa.com

74 

 

 
 

Where   ,   and   are the user-defined weights indicating the preference of the 

corresponding objective, and max1OBJ  and min1OBJ are the maximum and the minimum 

values of the final non-dominated set. Similar notation is used for max2OBJ , min2OBJ ,

max3OBJ , and max3OBJ . Note that 1 2 3 1w w w   , with 1 2 3, w w and w being either constants or 

functions of other objectives. In this chapter, three scenarios listed in Table 4.7 are 

considered to demonstrate the impact of the user preferences on the optimized solutions.  

Figure 4.11 shows a comparison between the observed energy consumption and the 

optimized one at t + T and t + 2T.  It indicates that in most cases, the optimized energy 

consumption for three scenarios have the same values. This is because the corresponding 

optimized indoor temperature falls between 68°F (20 °C) and 72°F (22.2 °C) as shown in 

Figures 4.12 – 4.13, and in this situation the values of Obj1 and Obj2 are zero. Therefore, 

in the three scenarios, only the energy consumption is optimized; however, for data 

points 2 and 4, the optimized indoor temperature is outside the 68°F (20°C) - 72°F 

(22.2°C) interval. As the user-defined weights vary for the three scenarios, the 

corresponding optimal solutions differ. As shown in Figure 4.11 and Table 4.7, the higher 

the weight assigned to the indoor temperature, the smaller the energy savings. For 

example, for data point 2, the optimized energy consumption for scenario 1, 2, and 3 is 

4.04, 4.80, and 5.16 kWh, respectively.  

 
Figure 4.11 The observed and optimized energy consumption for the three scenarios  
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Table 4.6 Nine representative points selected from the validation data set 

No. 
Current 

SAT-SPT 

Current 

Indoor Temp. 

Energy 

(t + T) 

Energy 

(t + 2T) 

Indoor 

Temp. (t + T) 

Indoor Temp. 

(t + 2T) 

1 55 67.9 2119.2 2098.2 68 68 

2 55 72.7 2805.6 3857.4 72.4 72.5 

3 55 70.5 1596.1 1954.3 69.7 71.6 

4 50.2 71.9 4527.4 5850 71.9 72.7 

5 50.2 70.4 1830.8 2487 72.0 72.1 

6 64.9 72.1 2393.1 2301.1 71.6 70.9 

7 64.9 70.8 2865.7 1363.7 69.9 68.5 

8 61.1 68.1 1994.3 3431.2 71.2 73 

9 53 68 2461.2 4273.6 71.6 70.7 

Table 4.7 Three weight scenarios for energy consumption and indoor temperature 

preference  

Scenario 

No. 

Weight assigned to energy 

at t + T and t + 2T 

Weight assigned to indoor 

temperature at t + T 

Weight assigned to 

indoor temperature at t 

+ 2T 

1 1 0 0 

2 0.4 0.3 0.3 

3 0 0.5 0.5 
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Figure 4.12 The observed and optimized indoor temperature at time t + T for the three 

scenarios 

 
Figure 4.13 The observed and optimized indoor temperature at time t + 2T for the three 

scenarios 

4.6.2 Optimization of multiple data points  

In this section, 100 data points from the validation data set in Table 4.1 are 
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observed and optimized energy consumption of the 100 points for these three scenarios. 

Note that the energy consumption in Figure 4.14 is expressed as the sum of energy at 

time increments: t + T and t + 2T. The optimized energy consumption in scenario 1 is the 

lowest as this scenario considers only the energy consumed while choosing the optimized 

solution from the non-dominated set; however, since scenario 3 is only concerned with 

indoor temperature, the corresponding optimized energy consumption is the highest. The 

optimization algorithm, therefore, saves 34.4%, 28.5%, and 26.2% for scenarios 1, 2, and 

3, respectively. Figures 4.15 – 4.16 illustrate the indoor room temperature at t + T and t + 

2T for the three scenarios.  In most cases, the indoor temperature remains within the 

desired interval from 68°F (20°C) to 72°F (22.2°C), in the three scenarios. In a limited 

number of cases, the indoor temperature falls outside of the desired interval. The 

optimization algorithm selects different values for each of the three scenarios based on 

the weights. Figures 4.17 – 4.18 illustrate the recommended set points for scenario 3, 

which is concerned with the indoor temperature violating the constraint.  

 
Figure 4.14 The sum of the observed and optimized energy consumption of the 100 

points for the three scenarios 
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Figure 4.15 The observed and optimized indoor temperature at time t + T for the three 

scenarios  

 
Figure 4.16 The observed and optimized indoor temperature at t + 2T for the three 

scenarios  
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Figure 4.17 The recommended set point of the supply air static pressure at t + T and t + 

2T 

 
Figure 4.18 The recommended set point of the supply air temperature at t + T and t + 2T  
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with representative single- and multi-point case studies demonstrated that energy savings 

ranging from 26.2% to 34.4% can be achieved by the proposed data-driven approach. The 

approximate 8% margin of energy savings is determined by the user comfort preferences. 
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CHAPTER 5  

CONCLUSION 

A data-driven methodology to model heating, ventilating, and air-conditioning 

(HVAC) systems was studied. It included analysis of experimental data, parameter 

selection, building HVAC models, and investigating optimization of system performance 

by considering energy consumption and thermal comfort. The research reported in the 

Thesis shed light on a new perspective of saving energy in building energy area. 

 In Chapter 2, a predictive model and a simulation model were built. The 

predictive model was used to predict the energy consumption and indoor temperature of 

an HVAC system, while the simulation model is to simulate the HVAC system behavior. 

Then the predictive model was converted to an optimization model. A nonlinear interior-

point algorithm was employed to optimize the proposed optimization model. A 

comparison between the optimized and simulated result was analyzed in the end.  

In Chapter 3, a time series based neural network was applied to build models for 

an HVAC system. After converting the data-approach model into an optimization model, 

three multi-objective particle swarm optimization algorithm were proposed and the best 

one was chosen to solve the optimization model.  The proposed data-driven approach was 

implemented and was proved to save energy up to 30%. 

In Chapter 4, a robust control strategy for an HVAC system was presented. A 

time series approach was used to describe the system and neural network was employed 

to build models with two set points as controllable variables. A fuzzy rule was adopted to 

control the set points in the model when applying a multi-objective particle swarm 

optimization algorithm to solve the optimization model.  The proposed approach was 

validated with two cases: representative single data points and multiple data points.  

One of the challenges for future research is to develop hybrid model based on the 

combination of physical equations and data-driven approach. Some components which 

have simple physical principle can apply mathematical equation to describe. For the 
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complex process, data-driven approach can be utilized to simplify the description without 

sacrificing accuracy.   
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